skip to main content


Search for: All records

Creators/Authors contains: "Gooseff, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Many studies in ecohydrology focusing on hydrologictransport argue that longer residence times across a stream ecosystem shouldconsistently result in higher biological uptake of carbon, nutrients, andoxygen. This consideration does not incorporate the potential forbiologically mediated reactions to be limited by stoichiometric imbalances.Based on the relevance and co-dependences between hydrologic exchange,stoichiometry, and biological uptake and acknowledging the limited amountof field studies available to determine their net effects on the retentionand export of resources, we quantified how microbial respiration iscontrolled by the interactions between and the supply of essential nutrients (C, N, and P)in a headwater stream in Colorado, USA. For this, we conducted two rounds ofnutrient experiments, each consisting of four sets of continuous injectionsof Cl− as a conservative tracer, resazurin as a proxy for aerobicrespiration, and one of the following nutrient treatments: (a) N, (b) N+C,(c) N+P, or (d) C+N+P. Nutrient treatments were considered to be knownsystem modifications that alter metabolism, and statistical tests helpedidentify the relationships between reach-scale hydrologic transport andrespiration metrics. We found that as discharge changed significantlybetween rounds and across stoichiometric treatments, (a) transient storagemainly occurred in pools lateral to the main channel and was proportional todischarge, and (b) microbial respiration remained similar between rounds andacross stoichiometric treatments. Our results contradict the notion thathydrologic transport alone is a dominant control on biogeochemicalprocessing and suggest that complex interactions between hydrology, resourcesupply, and biological community function are responsible for drivingin-stream respiration. 
    more » « less
  2. Available soil moisture is thought to be the limiting factor for most ecosystem processes in the cold polar desert of the McMurdo Dry Valleys (MDVs) of Antarctica. Previous studies have shown that microfauna throughout the MDVs are capable of biological activity when sufficient soil moisture is available (~2–10% gravimetric water content), but few studies have attempted to quantify the distribution, abundance, and frequency of soil moisture on scales beyond that of traditional field work or local field investigations. In this study, we present our work to quantify the soil moisture content of soils throughout the Fryxell basin using multispectral satellite remote sensing techniques. Our efforts demonstrate that ecologically relevant abundances of liquid water are common across the landscape throughout the austral summer. On average, the Fryxell basin of Taylor Valley is modeled as containing 1.5 ± 0.5% gravimetric water content (GWC) across its non-fluvial landscape with ~23% of the landscape experiencing an average GWC > 2% throughout the study period, which is the observed limit of soil nematode activity. These results indicate that liquid water in the soils of the MDVs may be more abundant than previously thought, and that the distribution and availability of liquid water is dependent on both soil properties and the distribution of water sources. These results can also help to identify ecological hotspots in the harsh polar Antarctic environment and serve as a baseline for detecting future changes in the soil hydrological regime.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    Arctic hydrology is experiencing rapid changes including earlier snow melt, permafrost degradation, increasing active layer depth, and reduced river ice, all of which are expected to lead to changes in stream flow regimes. Recently, long-term (>60 years) climate reanalysis and river discharge observation data have become available. We utilized these data to assess long-term changes in discharge and their hydroclimatic drivers. River discharge during the cold season (October–April) increased by 10% per decade. The most widespread discharge increase occurred in April (15% per decade), the month of ice break-up for the majority of basins. In October, when river ice formation generally begins, average monthly discharge increased by 7% per decade. Long-term air temperature increases in October and April increased the number of days above freezing (+1.1 d per decade) resulting in increased snow ablation (20% per decade) and decreased snow water equivalent (−12% per decade). Compared to the historical period (1960–1989), mean April and October air temperature in the recent period (1990–2019) have greater correlation with monthly discharge from 0.33 to 0.68 and 0.0–0.48, respectively. This indicates that the recent increases in air temperature are directly related to these discharge changes. Ubiquitous increases in cold and shoulder-season discharge demonstrate the scale at which hydrologic and biogeochemical fluxes are being altered in the Arctic.

     
    more » « less
  4. abstract

    Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

     
    more » « less